UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

MARK SCHEME for the May/June 2011 question paper

for the guidance of teachers

0620 CHEMISTRY

0620/32

Paper 3 (Extended Theory), maximum raw mark 80

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2			Syllabus	Paper
		IGCSE – May/June 2011	0620	32
	(i)	Rb / Sr		[1]
	(ii)	Ι		[1]
	(iii)	Fe		[1]
	(iv)	P		[1]
	(v)	Si		[1]
(a	a) (i)	no reaction		[1]
		Fe + Sn ²⁺ \rightarrow Fe ²⁺ + Sn / 2Fe + 3Sn ²⁺ \rightarrow 2Fe ³⁺ + 3Sn for realising that there would be a reaction shown by an attempt to equation e.g. writing Fe ₂ Sn etc. allow [1]	write an	[2]
		no reaction		[1]
	(ii)	tin oxide, nitrogen dioxide (accept nitogen(IV) oxide/dinitrogen tetro All three for two accept correct formulae	oxide), oxygel	n [2]
		any two correct products		[1]
(k	b) (i)	tin		[1]
	(ii)	$4OH^- \rightarrow O_2 + 2H_2O + 4e^-$ not balanced allow [1]		[2]
	(iii)	sulfuric acid		[1]
(0		c is more reactive than iron/steel is less reactive than iron/steel		[1] [1]
	forr	c corrodes/reacts/loses electrons/is oxidised/is anodic/provides ns positive ions (in preference to iron or steel) ORA	sacrificial p	
	alio	w iron is cathodic for this mark.		[1]
		n/steel corrodes/reacts/rusts/loses electrons/is oxidised/is anodic/f ference to tin). ORA w tin is cathodic for this mark	orms positive	ions (in

Page	e 3	Mark Scheme: Teachers' version	Syllabus	Paper		
		IGCSE – May/June 2011	0620	32		
(a) (to	oncentration of thiosulfate is proportional to volume of thiosulfate solution added (when otal volume is same in all experiments) / <u>concentration</u> of acid always the same [2] or comments based on amount / to make experiments fair / comparable allow [1]				
(i		40 s		יי [1]		
	-					
(ii	́ b	ecreases/reaction slower ecause concentration of thiosulfate decreases equency/chances/rate of collisions decreases		[1] [1] [1]		
		ne mark can be scored for less/smaller amount/sma ollisions	ller volume of thiosulfa	ate / less		
(b) r	ate ir	ncreases with temperature (or at 42 °C) ORA		[1]		
•		les/molecules/ions move faster or gain energy / ORA accept reactants or atoms)		[1]		
n	more collisions / ORA					
g	greate	nark is for qualification of the collisions) i.e. er frequency / more per unit time/more often /greater on nore effective/more successful/more with activation ene		e collision [1]		
acce 2Fe ₂ O Fe ₂ O C +	pt F€ O ₃ + ₀ + O ₂ -	x equation $e_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$ $3C \rightarrow 4Fe + 3CO_2$ $3C \rightarrow 2Fe + 3CO$ $\rightarrow CO_2$ $\rightarrow 2CO$		[1]		
CaO	+ S	base equation $iO_2 \rightarrow CaSiO_3$ $+ SiO_2 \rightarrow CaSiO_3 + CO_2$		[1]		
carbo this re carbo carbo carbo limes to for	on <u>bu</u> eaction on dic on mo on <u>reo</u> stone m sla	re equations or comments <u>rns</u> to form carbon dioxide on is <u>exothermic</u> or <u>produces heat</u> oxide is <u>reduced</u> to carbon monoxide onoxide <u>reduces</u> hematite to iron <u>duces</u> hematite to iron removes silica <u>which is an impurity</u> ag <u>which is a waste product</u> <u>decomposes or symbol/word equation</u>		[3]		

limestone decomposes or symbol/word equation

PMT

Pa	ge 4	Mark Scheme: Teachers' version	Syllabus	Paper
		IGCSE – May/June 2011	0620	32
(a)	Zn + H ₂	$SO_4 \rightarrow ZnSO_4 + H_2 / Zn + 2H^+ \rightarrow Zn^{2+} + H_2$		[2]
		e for correct reactants [1] correct products [1] quation is given don't penalise SO ₄ ^{2–} spectator ions on both	n sides	
(b)	(exotherr	nic because) a cell produces (electrical) energy/electricity		[1]
	the next	two marks score for		
		are lost AND gained / oxidation no. or state/valency both rect half equations i.e. $Zn \rightarrow Zn^{2+} + 2e^{-}$ and $2H^{+} + 2e^{-}$		ecreases [2]
(c)	zinc cond it is	s the more reactive metal / it supplies electrons / it forms io	ns more readily t	[1] han iron [1]
(d)	replace in use (mor	tinc with magnesium ron with copper e) concentrated <u>sulfuric</u> acid se a <u>more</u> concentrated acid / a <u>more</u> concentrated solutior	ı	
				101

any **two**

[2]

	Page 5		Mark Scheme: Teachers' version	Syllabus	Paper
			IGCSE – May/June 2011	0620	32
6	(a) (i)	equa	at which methanol formed by forward reaction als rate it is reacting in back reaction of forward reaction equals rate of back reaction allow [1]		[1] [1]
	(ii)	high Expl	lower/decreased temperature /higher/increased pressure lanations not needed but if they are given they must be cor ORE values of temperature and pressure	rrect	[1] [1]
	(iii)		pressure can be used / lower pressure due to expense or not use a low temperature as rate would be too slow the ra		[1] conomic [1]
	(b) (i)	este	r		[1]
	(ii)	soap	o/sodium stearate or any acceptable salt/glycerol		[1]
	(iii)	burn	ing both fuels forms carbon		[1]
		-	ving plants to make biodiesel removes carbon dioxide a atmosphere		[1]
	(c) (i)	corre	ect SF of an octane		[1]
	(ii)	resu resu not colo	bromine (water)/bromine in an organic solvent lt octane remains brown/orange/yellow/red lt octane goes colourless/decolourises clear/discolours ur of reagent must be shown somewhere for [3] otherwise ept equivalent test using KMnO ₄ in acid or alkali	max [2]	[1] [1] [1]

	Page 6		Mark Scheme: Teachers' version	Syllabus	Paper
			IGCSE – May/June 2011	0620	32
7			1nbp around phosphorus 3nbp around each chlorine		[1] [1]
	(b) (i)	PC <i>l</i> a	$_{3}$ + 3H ₂ O \rightarrow 3HC l + H ₃ PO ₃		[1]
	(ii)	mea	solutions same concentration sure pH/pH paper/Universal indicator ochloric acid lower pH		[1] [1] [1]
			urs of Universal indicator can be given as red <orange<yello re precise pH values as long as HCl is lower than H₃PO₃</orange<yello 	W	
	OR Acid solutions same concentration add magnesium or any named metal above Hydrogen in reactivity series but magnesium				[1] not above
			ium carbonate or any insoluble carbonate ochloric acid react faster/shorter time		[1] [1]
		mea	acid solutions same concentration sure electrical conductivity ochloric acid better conductor/bulb brighter		[1] [1] [1]
		add	acid solutions same concentration sodium thiosulphate ochloric acid forms precipitate faster/less time		[1] [1] [1]
	(iii)	titrat secc	um hydroxide/sodium carbonate ion cond on correct reagent ond mark scores for mention of titration /burette/pipette/indic erimental detail not required	cator.	[1] [1]
		any	named soluble calcium salt e.g. calcium chloride/nitrate/hyd	droxide	[1]
		prec	ipitation/filter/decant/centrifuge		[1]

	Page 7		Mark Scheme: Teachers' version	Syllabus	Paper
			IGCSE – May/June 2011	0620	32
8	(a) (i)	(to avoid) carbon monoxide formation/so complete combustion occurs/avoid incom combustion So that $\rm CO_2$ is produced			ncomplete [1]
		CO	does not dissolve/react with alkali		[1]
	(ii)	CO ₂	is acidic		[1]
	volu		me of gaseous hydrocarbon 20 cm ³ me of oxygen used = 90 cm ³ me of carbon dioxide formed = 60 cm ³		[1] [1]
		no n	nark for 20 cm ³ of hydrocarbon.		
	(iv)	2C ₃ ł	$H_6(g)/2CxHy(g) + 9O_2(g) \rightarrow 6CO_2(g) + 6H_2O(I)$		[1]
		OR	$C_3H_6(g)$ + 9/2O ₂ (g) \rightarrow 3CO ₂ (g) + 3H ₂ O(I)		
		C ₃ H	6		[1]
		C₃H	$_{\rm 6}$ can be given in the equation for the second mark		
	(b) (i)		ect structural or displayed formula of another chlorob chlorobutane	utane / dichloro	butane / [1]
	(ii)	light	/ 200 °C / lead tetraethyl		[1]
	hea OR		cracking is the decomposition/breaking down of an alkane/hydrocarbon/petro heat/high temperature / Temperature between 450 °C to 800 °C		um [1]
			catalyst / named catalyst ve a simpler alkane and alkene	5	[1] [1]
	W		d equation or equation as example		[1]
		hydr	nake polymers / to increase petrol fraction / organic cl ogen four	nemicals/petroch	emicals / [1]